Class 9 22-9-2023

MID TERM EXAMINATION - MATHEMATICS

Time: 3 hrs. Max. Marks: 80

- **General Instructions:** This Question Paper has 5 Sections A - E.
- i) ii) Section A has 20 MCQs carrying 1 mark each.
- iii) Section B has 5 questions carrying 02 marks each.
- Section C has 6 questions carrying 03 marks each. iv)
- Section D has 4 questions carrying 05 marks each. v)
- vi) Section E has 3 case based integrated units of assessment (04 marks each) with sub-parts of the values of 1,1 and 2 marks each respectively.
- All Questions are compulsory. However, an internal choice in 2 Qs of 5 marks, 2 Qs of 3 marks vii) and 2 Questions of 2marks has been provided. An internal choice has been provided in the 2 marks questions of Section E.

SECTION – A

1.	The di a)	stance of a poi 6 units	nt (-6, - b)	3) from the x- 3 units	axis is:	c)	-6 units	d)	-3 units		
2.	In ∆AE a)	BC, AB = AC an 30°	d ∠B = b)	70° then ∠A is 35°	s equal t	to c)	40°	d)	55°		
3.	Zero o a)	f the polynomia $\frac{-7}{5}$	al, p(x) b)	$= 7x + 5$ is $\frac{5}{7}$		c)	<u>7</u> 5	d)	$\frac{-5}{7}$		
4.	The po a)	oint which lies o (0, 5)	on y-axi b)	s at a distance (5, 0)	e of 5 un	nits in th c)	e negative dire (0, -5)	ction of d)	y-axis is (-5, 0)		
5.	The va a)	alue of the poly 10	nomial b)	p(x) = 2 + x + 12	$-x^2 - x^3$	at x = c)	-2 is -12	d)	-10		
6.	The va	lue of x in the	given fi	gure is			,C				
	a)	20°				/	/				
	b)	30°									
	c)	40°					20				
	d)	15°]°				
	u)	15			А	0	В				
7.	Every a) c)	rational numbe A natural num a real number	r is Iber			b) d)	an integer a whole numb	er			
8.	The nu a)	umber of solution 2	ons of t b)	he linear equa 3	tion 2x · c)	+ 3y = 1 infinite	1 is	d)	0		
9.	The de a)	egree of the po 7	lynomia b)	ll 9x ⁵ + 8x ³ +0» 5	к ⁷ — 8х + с)	2 is 3		d)	1		
10.	If the point (3, 2) satisfies the equation $3y = ax + 5$, then the value of a is										
-	a)	<u>1</u>	b)	<u>-1</u>	c)	1		d)	-1		
		5	- /	5	-)	3			3		
11.	The m a)	easure of an ai 25°	ngle is f b)	ive times its co 35°	ompleme c)	ent. The 65°	e measure of th	e angle d)	is 75°		
12.	The pr a)	roduct of $(6 + \sqrt{3})$	/3) and b)	(6 - √3)is -3	c)	6		d)	33		
13.	In the	aiven fia., if l	// <i>m</i> and	$\angle 1 : \angle 2 = 2 : 3$	3. then	∠2 is o	M	n			
	a)	36°			-,		1	"	- 8		
	b)	72°				1	1/	\rightarrow	l		
	c) d)	108° 126°					/				
	uj	120					P2	\rightarrow	m		

Std. 9

14.	Abscissa of all points lying on y-axis is a) 0 b) 1	c) -1	d) any number					
15.	In two triangles ABC and PQR, if $AB = QR$, $BC = PR$ a) $\triangle ABC \cong \triangle PQR$ b) c) $\triangle BAC \cong \triangle RPQ$ d)	and CA = PQ then $\Delta CBA \cong \Delta PRQ$ $\Delta PQR \cong \Delta BCA$						
16.	$\sqrt{9}$ is a number.a)rationalb)c)Neither rational nor irrational	irrational cannot be explainec	t					
17.	If $\triangle ABC \cong \triangle PQR$. If $AB = 5 \text{ cm}$, $\angle B = 40^{\circ}$ and $\angle A = a$) a) $QP = 5 \text{ cm}$, $\angle P = 60^{\circ}$ b) c) $QR = 5 \text{ cm}$, $\angle P = 60^{\circ}$ d)	80°, then which of t QP = 5 cm, $\angle R = 6$ QR = 5 cm, $\angle Q = 4$	the following is true 0° 1 0°					
18.	Degree of a constant polynomial is a) 0 b) 1 c)	any real number	d) not defined					
In the following questions (19-20) statements of Assertion (A) is followed by a statement of Reason (R). Choose the correct option:								
19.	Assertion (A) : If two adjacent angles $\angle AOB = 2(x + 2C)$	-1) and ∠BOC = 3	Bx +2 forms a linear pair,					
	Reason (R) : If a ray stands on a line, the sum o	f two adjacent angle	es formed is 180°.					
	a) Both Assertion (A) and Reason (R) are true a	and Reason (R) is th	ne correct explanation					
	 b) Both Assertion (A) and Reason (R) are true to a second the second true to a second true to a	b) Both Assertion (A) and Reason (R) are true but reason is not the correct explanation						
	 c) Assertion (A) is true but Reason (R) is false. d) Assertion (A) is false but Reason (R) is true. 							
20.	Assertion (A) : $\sqrt{2}$, $\sqrt{3}$ are examples of irrational necessor (R) : An irrational number can be express	umbers. sed in the form of 1	$\frac{p}{q}$, $q \neq 0$.					
	a) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation							
	b) Both Assertion (A) and Reason (R) are true but reason is not the correct explanation							
	 c) Assertion (A) is true but Reason (R) is false. d) Assertion (A) is false but Reason (R) is true. 							
	Section – B	Â						
21.	In the figure, $AB = AC$ and D and E are points on the side BC such that BD = EC. Prove that $AD = AE$.	B D	E C					
22.	Find four rational numbers between $\frac{-6}{7}$ and $\frac{-5}{6}$. (OR)							
	Find x if : $\left(\frac{6}{5}\right)^{-1} \left(\frac{5}{6}\right)^{-1} = \frac{125}{216}$.							
23.	If $p(x) = 2x^2 - x + 3$ then evaluate $p(-2) - p(\frac{1}{2})$							

(OR) Factorize 125x³y – 343y

- 24. Find the coordinates of the point
 - i) which lies on x-axis and y-axis both
 - ii) whose abscissa is 6 and which lies on x-axis
- 25. Prove that the angles opposite to equal sides of an isosceles triangle are equal.

Std. 9

 $5\sqrt{8} + 2\sqrt{32} - 2\sqrt{2}$

SECTION – C

- 3 -

(ii)

- 26. Simplify : (i) $2^{\frac{2}{3}} \times 2^{\frac{-5}{3}} \times 8^{\frac{1}{3}}$
- 27. AD is an altitude of an isosceles triangle ABC in which AB = AC. Show that i) AD bisects BC ii) AD bisects $\angle A$ (OR)

It is given that $\angle XYZ = 76^{\circ}$ and XY is produced to a point P. Draw a figure from the given information. If ray YR bisects $\angle ZYP$. Find $\angle XYR$ and reflex $\angle RYP$.

- 28. If two lines intersect each other then prove that the vertically opposite angles are equal.
- 29. Factorize : $2x^3 + x^2 13x + 6$ (OR) Factorize : $8a^3 27b^3 + 8c^3 + 36abc$
- 30. Add: $0.6 + 0.\overline{7} + 0.4\overline{7}$
- 31. AB and CD are two intersecting lines as shown in the figure. If $\angle AOC = 50^{\circ}$ and POB = 90°, find $\angle POC$ and $\angle POD$.

SECTION - D

- 32. Find the value of a and b if $\frac{7+3\sqrt{5}}{3+\sqrt{5}} \frac{7-3\sqrt{5}}{3-\sqrt{5}} = a + \sqrt{5}b$
- 33. In the right \triangle ABC, right angled at C, M is the mid point of hypotenuse AB. C is joined to M and produced to a point D such that DM = CM. Point D is joined to B. Show that
 - (i) $\Delta AMC \cong \Delta BMD$
 - (ii) $\angle DBC$ is a right angle
 - (iii) $\Delta DBC \cong \Delta ACB$

State and prove ASA congruence for triangles.

34. Prove that
$$(a + b)^3 - (a - b)^3 - 6a^2b + 6b^3 = 8b^3$$

(OR)
Verify that : $x^3 + y^3 + z^3 - 3xyz = \frac{1}{2}(x + y + z)[(x - y)^2 + (y - z)^2 + (z - x)^2]$

(OR)

35. If a transversal intersects two lines such that the bisectors of a pair of corresponding angles are parallel then prove that the two lines are parallel.

SECTION – E

36. Raghav owns a square field having area $9x^2 + 12x + 4$. He fenced a rectangular region for cows in the interior of the field having area given by $x^2 + x - 2$.

M

С

B

Using the above information, answer the following questions:

- Find the side of the square field. i)
- If p(x) and q(x) represents the two polynomials respectively then find the sum of the ii) degrees of p(x) and q(x).
- What are the dimensions of the rectangular region? iii) (OR)

If $p(x) = 6x^2 + 17x + 5$ represents the rectangular region then find p(-2).

37. A pendant is given a dainty dazzle look is crafted in white gold. It is triangular in shape and studded with three diamonds. The sketch originally drawn by the artist designer is shown with measurement details as AB = AC = 13mm, BD = CD = 5mm. Answer the questions :

- i) Show that $\triangle ABD \cong \triangle ACD$
- ii) Show that $\triangle ABP \cong \triangle ACP$
- iii) If $\angle BDC = 100^{\circ}$ then find the measure of $\angle DBC$.

(OR)

If the equal sides AB and AC of this pendant are 13 mm and its height from A to BC is 5 mm then find the length BP.

- The autorickshaw fare in a city is charged as Rs. 10 for the first kilometer and Rs. 4 per kilometer 38. for subsequent distance covered. The linear equation that represents the above statement is $x = \frac{y-6}{x}$ where x is the total distance covered and y is the fare charged for the journey.

 - What amount will a person has to pay if he travels 12 km? i)
 - How many solutions does the above linear equation can have? ii)
 - Write the above equation in the form of ax + by + c = 0 and write the value of a, iii) b and c.

(OR)

Find the distance travelled by a person if he has paid Rs. 202 at the end of his journey?

-X-X-X-X-X-X-X-